Study on the Dynamic Recrystallization Behavior of 47Zr-45Ti-5Al-3V Alloy by CA-FE Simulation.
Wenwei ZhangQiuyue YangYuanbiao TanYa YangSong XiangFei ZhaoPublished in: Materials (Basel, Switzerland) (2021)
The dynamic recrystallization (DRX) behavior of 47Zr-45Ti-5Al-3V alloy was studied by using the experiment and numerical simulation method based on DEFORM-3D software and cellular automata (CA) over a range of deformation temperatures (850 to 1050 °C) and strain rates (10-3 to 100 s-1). The results reveal that the DRX behavior of 47Zr-45Ti-5Al-3V alloy strongly depends on hot-working parameters. With rising deformation temperature (T) and decreasing strain rate (ε˙), the grain size (dDRX) and volume fraction (XDRX) of DRX dramatically boost. The kinetics models of the dDRX and XDRX of DRX grains were established. According to the developed kinetics models for DRX of 47Zr-45Ti-5Al-3V alloy, the distributions of the dDRX and XDRX for DRX grains were predicted by DEFORM-3D. DRX microstructure evolution is simulated by CA. The correlation of the kinetics model is verified by comparing the dDRX and XDRX between the experimental and finite element simulation (FEM) results. The nucleation and growth of dynamic recrystallization grains in 47Zr-45Ti-5Al-3V alloy during hot-working can be simulated accurately by CA simulation, comparing with FEM.