Login / Signup

Super-Durable and Highly Efficient Electrostatic Induced Nanogenerator Circulation Network Initially Charged by a Triboelectric Nanogenerator for Harvesting Environmental Energy.

Pinshu RuiWen ZhangPeihong Wang
Published in: ACS nano (2021)
Triboelectric nanogeneration is a burgeoning and promising technology for harvesting low-frequency mechanical energy from the environment, but the energy conversion efficiency and service life of the triboelectric nanogenerator (TENG) device are limited by the inevitable frictional resistance between the tribo-surfaces. Herein, we propose an electrostatic induction nanogenerator (EING) circulation network (EICN) by integrating an arbitrary number of EING units for harvesting low-frequency mechanical energy. Because of absolute conquering of the friction resistance between the tribo-surfaces, the average power density of the EING device in the EICN by the initial charge injection (from a TENG or a power supply) is more than a 15-fold enhancement compared with the previous swing-structured TENG. The EICN can recover to the stable and optimal electrical output state in 90 s without external charge injection, even if the external triggering interrupts for 40 min and then restarts, demonstrating the excellent application feasibility of this strategy. To display the practical application scenario for harvesting large-scale mechanical energy from the environment, a high-performance and ultralow-friction TENG is designed for the initial charge injection to the EICN. Moreover, portable electronic devices are powered successfully to realize the self-powered sensing and remote marine environmental monitoring when an EICN with three EINGs is triggered by the real water wave. This EICN strategy not only can harvest low-frequency swing type mechanical energy but also has the capacity of harvesting the rotational mechanical energy after reasonable structure modification, providing an excellent candidate for large-scale blue energy harvesting in practical applications.
Keyphrases
  • highly efficient
  • healthcare
  • molecular dynamics simulations
  • oxidative stress
  • ultrasound guided
  • high glucose