Login / Signup

Evaluation of Antimicrobial and Anticancer Activities of Selected Medicinal Plants of Himalayas, Pakistan.

Farzana KausarKyung-Hwan KimHafiz Muhammad Umer FarooqiMuhammad Awais FarooqiMuhammad KaleemRooma WaqarAtif Ali Khan KhalilFazli KhudaChethikkattuveli Salih Abdul RahimKinam HyunKyung Hyon ChoiAbdul-Samad Mumtaz
Published in: Plants (Basel, Switzerland) (2021)
Medicinal plants are known for their diverse use in the traditional medicine of the Himalayan region of Pakistan. The present study is designed to investigate the anticancer and antimicrobial activities of Prunus cornuta and Quercus   semicarpifolia. The anticancer activity was performed using cancerous human cell lines (HepG2, Caco-2, A549, MDA-MB-231, and NCI-H1437 carcinoma cells), while the antimicrobial activity was conducted with the agar-well diffusion method. Furthermore, toxicity studies were performed on alveolar and renal primary epithelial cells. Initially, different extracts were prepared by maceration techniques using n -hexane, chloroform, ethyl acetate, butanol, and methanol. The preliminary phytochemical screening showed the presence of secondary metabolites such as alkaloids, tannins, saponins, flavonoids, glycosides, and quinones. The chloroform extract of P. cornuta (PCC) exhibited significant inhibitory activity against Acinetobacter baumannii (16 mm) and Salmonella enterica (14.5 mm). The A. baumannii and S. enterica strains appeared highly susceptible to n -hexane extract of P. cornuta (PCN) with an antibacterial effect of 15 mm and 15.5 mm, respectively. The results also showed that the methanolic extracts of Quercus semecarpifolia (QSM) exhibited considerable antibacterial inhibitory activity in A. baumannii (18 mm), Escherichia coli (15 mm). The QSN and QSE extracts also showed good inhibition in A. baumannii with a 16 mm zone of inhibition. The Rhizopus oryzae strain has shown remarkable mycelial inhibition by PCM and QSN with 16 mm and 21 mm inhibition, respectively. Furthermore, the extracts of P. cornuta and Q. semicarpifolia exhibited prominent growth inhibition of breast (MDA-MB-231) and lung (A549) carcinoma cells with 19-30% and 22-39% cell viabilities, respectively. The gut cell line survival was also significantly inhibited by Q. semicarpifolia (24-34%). The findings of this study provide valuable information for the future development of new antibacterial and anticancer medicinal agents from P. cornuta and Q. semicarpifolia extracts.
Keyphrases