Preclinical Pharmacology of [2-(3-Fluoro-5-Methanesulfonyl-phenoxy)Ethyl](Propyl)amine (IRL790), a Novel Dopamine Transmission Modulator for the Treatment of Motor and Psychiatric Complications in Parkinson Disease.
Susanna WatersClas SonessonPeder SvenssonJoakim TedroffManolo CartaElisabeth LjungJenny GunnergrenMalin EdlingBoel SvanbergAnne FagerbergJohan KullingsjöStephan HjorthNicholas WatersPublished in: The Journal of pharmacology and experimental therapeutics (2020)
IRL790 ([2-(3-fluoro-5-methanesulfonylphenoxy)ethyl](propyl)amine, mesdopetam) is a novel compound in development for the clinical management of motor and psychiatric disabilities in Parkinson disease. The discovery of IRL790 was made applying a systems pharmacology approach based on in vivo response profiling. The chemical design idea was to develop a new type of DA D3/D2 receptor type antagonist built on agonist rather than antagonist structural motifs. We hypothesized that such a dopamine antagonist with physicochemical properties similar to agonists would exert antidyskinetic and antipsychotic effects in states of dysregulated dopaminergic signaling while having little negative impact on physiologic dopamine transmission and, hence, minimal liability for side effects related to dopamine-dependent functions. At the level of in vivo pharmacology, IRL790 displays balancing effects on aberrant motor phenotypes, reducing l-DOPA-induced dyskinesias in the rodent 6-hydroxydopamine lesion model and reducing psychostimulant-induced locomotor hyperactivity elicited by pretreatment with either d-amphetamine or dizocilpine, without negatively impacting normal motor performance. Thus, IRL790 has the ability to normalize the behavioral phenotype in hyperdopaminergic as well as hypoglutamatergic states. Neurochemical and immediate early gene (IEG) response profiles suggest modulation of DA neurotransmission, with some features, such as increased DA metabolites and extracellular DA, shared by atypical antipsychotics and others, such as increased frontal cortex IEGs, unique to IRL790. IRL790 also increases extracellular levels of acetylcholine in the prefrontal cortex and ventral hippocampus. At the receptor level, IRL790 appears to act as a preferential DA D3 receptor antagonist. Computational docking studies support preferential affinity at D3 receptors with an agonist-like binding mode. SIGNIFICANCE STATEMENT: This paper reports preclinical pharmacology along with molecular modeling results on IRL790, a novel compound in clinical development for the treatment of motor and psychiatric complications in advanced Parkinson disease. IRL790 is active in models of perturbed dopaminergic and glutamatergic signaling, including rodent 6-hydroxydopamine l-DOPA-induced dyskinesias and psychostimulant-induced hyperactivity, in a dose range that does not impair normal behavior. This effect profile is attributed to interactions at dopamine D2/D3 receptors, with a 6- to 8-fold preference for the D3 subtype.
Keyphrases
- parkinson disease
- prefrontal cortex
- deep brain stimulation
- high glucose
- diabetic rats
- mental health
- uric acid
- drug induced
- spinal cord
- small molecule
- stem cells
- positron emission tomography
- metabolic syndrome
- functional connectivity
- binding protein
- high throughput
- cell therapy
- emergency department
- brain injury
- mass spectrometry
- working memory
- cognitive impairment
- genome wide analysis