Login / Signup

A Förster Resonance Energy Transfer-Based Ratiometric Sensor with the Allosteric Transcription Factor TetR.

Thuy T NguyenMargaret ChernR C BaerJames E GalaganAllison M Dennis
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
A recent description of an antibody-free assay is significantly extended for small molecule analytes using allosteric transcription factors (aTFs) and Förster resonance energy transfer (FRET). The FRET signal indicates the differential binding of an aTF-DNA pair with a dose-dependent response to its effector molecule, i.e., the analyte. The new sensors described here, based on the well-characterized aTF TetR, demonstrate several new features of the assay approach: 1) the generalizability of the sensors to additional aTF-DNA-analyte systems, 2) sensitivity modulation through the choice of donor fluorophore (quantum dots or fluorescent proteins, FPs), and 3) sensor tuning using aTF variants with differing aTF-DNA binding affinities. While all of these modular sensors self-assemble, the design reported here based on a recombinant aTF-FP chimera with commercially available dye-labeled DNA uses readily accessible sensor components to facilitate easy adoption of the sensing approach by the broader community.
Keyphrases