Optimization, characterization and evaluation of ZnO/polyvinylidene fluoride nanocomposites for orthopedic applications: improved antibacterial ability and promoted osteoblast growth.
Yanhai XiWenming PanDan XiXue LiuJiangmin YuMintao XueNing XuJiankun WenWeiheng WangHailong HeYanyan LiuYue HeChunjing GuoDaquan ChenXiaojian YePublished in: Drug delivery (2021)
Herein, electrospun zinc oxide nanoparticle/poly (vinylidene fluoride) (ZnONP/PVDF) composite fiber membranes were designed, fabricated, and tested for improved orthopedic applications. A single factor screening study was conducted to determine the optimal ZnONP/PVDF formulation based on osteoblast (bone forming cells) proliferation and antibacterial properties. Further, ZnONP/PVDF materials were characterized for their morphology, crystallinity, roughness, piezoelectric properties, and chemistry to understand such cell results. The optimal concentration of high molecular weight PVDF (18%, w/v) and a low concentration of ZnONPs (1 mg/ml) were identified for electrospinning at room temperature in order to inhibit bacterial colonization (without resorting to antibiotic use) and promote osteoblast proliferation. Compared to no ZnO/PVDF scaffold without Piezo-excited group,the study showed that on the 1 mg/ml ZnO/PVDF scaffolds with piezo-excitation, the density of SA and E.coli decreased by 68% and 56%.The density of osteoblasts doubled within three days(compared to the control). In summary, ZnONP/PVDF composite fiber membranes were formulated by electrospinning showing an exceptional ability to eliminate bacteria colonization while at the same time promote osteoblast functions and, thus, they should be further studied for a wide range of orthopedic applications.