Login / Signup

Exploring the Non-Covalent Bonding in Water Clusters.

Luis E SeijasCesar H ZambranoRafael AlmeidaJorge Alí-TorresLuis RincónFernando Javier Torres
Published in: International journal of molecular sciences (2023)
QTAIM and source function analysis were used to explore the non-covalent bonding in twelve different water clusters (H 2 O) n obtained by considering n = 2-7 and various geometrical arrangements. A total of seventy-seven O-H⋯O hydrogen bonds (HBs) were identified in the systems under consideration, and the examination of the electron density at the bond critical point (BCP) of these HBs revealed the existence of a great diversity of O-H⋯O interactions. Furthermore, the analysis of quantities, such as |V(r)|/G(r) and H(r), allowed a further description of the nature of analogous O-H⋯O interactions within each cluster. In the case of 2-D cyclic clusters, the HBs are nearly equivalent between them. However, significant differences among the O-H⋯O interactions were observed in 3-D clusters. The assessment of the source function (SF) confirmed these findings. Finally, the ability of SF to decompose the electron density ( ρ ) into atomic contributions allowed the evaluation of the localized or delocalized character of these contributions to ρ at the BCP associated to the different HBs, revealing that weak O-H⋯O interactions have a significant spread of the atomic contributions, whereas strong interactions have more localized atomic contributions. These observations suggest that the nature of the O-H⋯O hydrogen bond in water clusters is determined by the inductive effects originated by the different spatial arrangements of the water molecules in the studied clusters.
Keyphrases
  • electron microscopy
  • single cell
  • solar cells
  • visible light
  • transition metal