Login / Signup

Rapid Detection of Nonprotein Nitrogen Adulterants in Milk Powder Using Point-Scan Raman Hyperspectral Imaging Technology.

Qiaoling YangBing NiuShuqing GuJinge MaChaomin ZhaoQin ChenDehua GuoXiaojun DengYongai YuFeng Zhang
Published in: ACS omega (2022)
To develop a rapid detection method for nonprotein nitrogen adulterants, this experiment sets up a set of point-scan Raman hyperspectral imaging systems to qualitatively distinguish and quantitatively and positionally analyze samples spiked with a single nonprotein nitrogen adulterant and samples spiked with a mixture of nine nonprotein nitrogen adulterants at different concentrations (5 × 10 -3 to 2.000%, w/w). The results showed that for samples spiked with single nonprotein nitrogen adulterants, the number of pixels corresponding to the adulterant in the region of interest increased linearly with an increase in the analyte concentration, the average coefficient of determination ( R 2 ) was above 0.99, the minimum detection concentration of nonprotein nitrogen adulterants reached 0.010%, and the relative standard deviation (RSD) of the predicted concentration was less than 6%. For the sample spiked with a mixture of nine nonprotein nitrogen adulterants, the standard curve could be used to accurately predict the additive concentration when the additive concentration was greater than 1.200%. The detection method established in this study has good accuracy, high sensitivity, and strong stability. It provides a method for technical implementation of real-time and rapid detection of adulterants in milk powder at the port site and has good application and promotion prospects.
Keyphrases