Semantic associations between arithmetic and space: Evidence from temporal order judgements.
Michael AndresSamuel SalvaggioNathalie LefèvreMauro PesentiNicolas MassonPublished in: Memory & cognition (2021)
Spatial biases associated with subtraction or addition problem solving are generally considered as reflecting leftward or rightward attention shifts along a mental numerical continuum, but an alternative hypothesis not implying spatial attention proposes that the operator (plus or minus sign) may favour a response to one side of space (left or right) because of semantic associations. We tested these two accounts in a series of temporal order judgement experiments that consisted in the auditory presentation of addition or subtraction problems followed 200 ms (Experiments 1-2) or 800 ms (Experiment 3) later by the display of two lateralized targets in close temporal succession. To dissociate the side where the operation first brought their attention from the side they had to respond to, we asked participants to report which of the left or right target appeared first or last on screen. Under the attention-orienting account, addition should elicit more rightward responses than subtraction when participants have to focus on the first target, but more leftward responses when they have to focus on the last target, because the latter is opposite to the side where the operation first brought their attention. Under the semantic account, addition should elicit more rightward responses than subtraction, no matter the focus is on the first or last target, because participants should systematically favour the side conceptually linked to the operator. The results of the three experiments converge to indicate that, in lateralized target detection tasks, the spatial biases induced by arithmetic operations stem from semantic associations.