DNA-Based Nanodevices Controlled by Purely Entropic Linker Domains.
Davide MariottiniAndrea IdiliMinke A D NijenhuisTom F A de GreefFrancesco RicciPublished in: Journal of the American Chemical Society (2018)
We demonstrate here the rational design of purely entropic domains as a versatile approach to achieve control of the input/output response of synthetic molecular receptors. To do so and to highlight the versatility and generality of this approach, we have rationally re-engineered two model DNA-based receptors: a clamp-like DNA-based switch that recognizes a specific DNA sequence and an ATP-binding aptamer. We show that, by varying the length of the linker domain that connects the two recognition portions of these receptors, it is possible to finely control their affinity for their specific ligand. Through mathematical modeling and thermodynamic characterization, we also demonstrate for both systems that entropy changes associated with changes in linker length are responsible for affinity modulation and that the linker we have designed behaves as a disordered random-coil polymer. The approach also allows us to regulate the ligand concentration range at which the receptors respond and show optimal specificity. Given these attributes, the use of purely entropic domains appears as a versatile and general approach to finely control the activity of synthetic receptors in a highly predictable and controlled fashion.