Login / Signup

Differential Frond Growth in the Isomorphic Haploid-diploid Red Seaweed Agarophyton chilense by Long-term In Situ Monitoring.

Vasco M N C S VieiraAschwin H EngelenOscar R HuanelMarie-Laure Guillemin
Published in: Journal of phycology (2021)
Conditional differentiation between haploids and diploids has been proposed to drive the evolutionary stability of isomorphic biphasic life cycles. The cost of producing and maintaining genetic information has been posed as a possible driver of this conditional differentiation. Under this hypothesis, haploids benefit over diploids in resource-limited environments by halving the costs of producing and maintaining DNA. Spared resources can be allocated to enhance survival, growth or fertility. Here we test in the field whether indeed haploids have higher growth rates than diploids. Individuals of the red seaweed Agarophyton chilense, were mapped and followed during 2 years with 4-month census intervals across different stands within the Valdivia River estuary, Chile. As hypothesized, haploids grew larger and faster than diploids, but this was sex-dependent. Haploid (gametophyte) females grew twice as large and 15% faster than diploids (tetrasporophytes), whereas haploid males only grew as large and as fast as the maximum obtained by diploids in summer. However, haploid males maintained their maximum sizes and growth rates constant year-round, while diploids were smaller and had lower growth rates during the winter. In conclusion, our results confirm the conditional differentiation in size and growth between haploids and diploids but also identified important differences between males and females. Besides understanding life cycle evolution, the dynamics of A. chilense frond growth reported informs algal farmers regarding production optimization and should help in determining best planting and harvesting strategies.
Keyphrases
  • gene expression
  • genome wide
  • embryonic stem cells
  • young adults
  • life cycle
  • copy number
  • free survival
  • nucleic acid