Integrating Sacrificial Bonds into Dynamic Covalent Networks toward Mechanically Robust and Malleable Elastomers.
Yingjun LiuZhenghai TangSiwu WuBaochun GuoPublished in: ACS macro letters (2019)
Vitrimers are a class of covalently cross-linked polymers that have drawn great attention due to their fascinating properties such as malleability and reprocessability. The state of art approach to improve their mechanical properties is the addition of fillers, which, however, greatly restricts the chain mobility and impedes network topology rearrangement, thereby deteriorating the dynamic properties of vitrimer composites. Here, we demonstrate that the integration of sacrificial bonds into a vitrimeric network can remarkably enhance the overall mechanical properties while facilitating network rearrangement. Specifically, commercially available epoxidized natural rubber is covalently cross-linked with sebacic acid and simultaneously grafted with N-acetylglycine (NAg) through the chemical reaction between epoxy and carboxyl groups, generating exchangeable β-hydroxyl esters and introducing amide functionalities into the networks. The hydrogen bonds arising from amide functionalities act in a sacrificial and reversible manner, that is, preferentially break prior to the covalent framework and undergo reversible breaking and reforming to dissipate mechanical energy under external load, which leads to a rarely achieved combination of high strength, modulus, and toughness. The topology rearrangement of the cross-linked networks can be accomplished through transesterification reactions at high temperatures, which is accelerated with the increase of grafting NAg amount due to the dissociation of transient hydrogen bonds and increase of the ester concentration in the system.