Login / Signup

Comparative Study of the Supercapacitive Performance of Three Ferrocene-Based Structures: Targeted Design of a Conductive Ferrocene-Functionalized Coordination Polymer as a Supercapacitor Electrode.

Qian MiaoFarzaneh RouhaniHamed Moghanni-Bavil-OlyaeiKuan-Guan LiuXue-Mei GaoJing-Zhe LiXiu-De HuZhi-Min JinMao-Lin HuAli Morsali
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
As redox-active based supercapacitors are known as highly desirable next-generation supercapacitor electrodes, the targeted design of two ferrocene-functionalized (Fc(COOH)2 ) clusters based on coinage metals, [(PPh3 )2 AgO2 CFcCO2 Ag(PPh3 )2 ]2 ⋅7 CH3 OH (SC1 : super capacitor) and [(PPh3 )3 CuO2 CFcCO2 Cu(PPh3 )3 ]⋅3 CH3 OH (SC2 ), is reported. Both structures are fully characterized by various techniques. The structures are utilized as energy storage electrode materials, giving 130 F g-1 and 210 F g-1 specific capacitance at 1.5 A g-1 in Na2 SO4 electrolyte, respectively. The obtained results show that the presence of CuI instead of AgI improves the supercapacitive performance of the cluster. Further, to improve the conductivity, the PSC2 ([(PPh3 )2 CuO2 CFcCO2 ]∞ ), a polymeric structure of SC2 , was synthesized and used as an energy storage electrode. PSC2 displays high conductivity and gives 455 F g-1 capacitance at 3 A g-1 . The PSC2 as a supercapacitor electrode presents a high power density (2416 W kg-1 ), high energy density (161 Wh kg-1 ), and long cycle life over 4000 cycles (93 %). These results could lead to the amplification of high-performance supercapacitors in new areas to develop real applications and stimulate the use of the targeted design of coordination polymers without hybridization or compositions with additive materials.
Keyphrases