Login / Signup

Identification of active gaseous-alkane degraders at natural gas seeps.

Muhammad Farhan Ul HaqueMarcela HernándezAndrew T CrombieJ Colin Murrell
Published in: The ISME journal (2022)
Natural gas seeps release significant amounts of methane and other gases including ethane and propane contributing to global climate change. In this study, bacterial actively consuming short-chain alkanes were identified by cultivation, whole-genome sequencing, and stable-isotope probing (SIP)-metagenomics using 13 C-propane and 13 C-ethane from two different natural gas seeps, Pipe Creek and Andreiasu Everlasting Fire. Nearly 100 metagenome-assembled genomes (MAGs) (completeness 70-99%) were recovered from both sites. Among these, 16 MAGs had genes encoding the soluble di-iron monooxygenase (SDIMO). The MAGs were affiliated to Actinobacteria (two MAGs), Alphaproteobacteria (ten MAGs), and Gammaproteobacteria (four MAGs). Additionally, three gaseous-alkane degraders were isolated in pure culture, all of which could grow on ethane, propane, and butane and possessed SDIMO-related genes. Two Rhodoblastus strains (PC2 and PC3) were from Pipe Creek and a Mycolicibacterium strain (ANDR5) from Andreiasu. Strains PC2 and PC3 encoded putative butane monooxygenases (MOs) and strain ANDR5 contained a propane MO. Mycolicibacterium strain ANDR5 and MAG19a, highly abundant in incubations with 13 C-ethane, share an amino acid identity (AAI) of 99.3%. We show using a combination of enrichment and isolation, and cultivation-independent techniques, that these natural gas seeps contain a diverse community of active bacteria oxidising gaseous-alkanes, which play an important role in biogeochemical cycling of natural gas.
Keyphrases
  • room temperature
  • climate change
  • carbon dioxide
  • escherichia coli
  • amino acid
  • healthcare
  • mental health
  • quantum dots
  • dna methylation
  • gene expression
  • ionic liquid
  • bioinformatics analysis
  • human health