A Closer Look at Corrugated Au Tips.
Ashish BhattaraiKevin T CramptonAlan G JolyChih-Feng WangZachary D SchultzPatrick Z El-KhouryPublished in: The journal of physical chemistry letters (2020)
A series of optical and electron microscopies are utilized in concert to unravel the properties of corrugated metallic tips. While the overall microscopic shapes of the tips dictate their optical resonances and plasmonic field enhancement factors, nanometric structural details govern their tip-enhanced Raman (TER) spectra and images. Using 4-thiobenzonitrile (TBN) as a molecular reporter, spatially resolved TER spectra reveal that optical rectification and molecular charging are among the prominent observables in the tip-tip TER geometry. We show the spurious appearance of anions is driven by highly localized resonances that appear as a result of surface corrugation and their manifestation throughout the course of TER nanospectroscopy complicates spectral assignments. Overall, nanoscale spatial variations in the TERS spectra suggest that the tip-tip geometry sustains junction plasmons that appear very different from what may be expected from the hybridization of the bulk tip resonances.