Login / Signup

Antifouling Surface Coating Using Droplet-Based SI-ARGET ATRP of Carboxybetaine under Open-Air Conditions.

Hyeongeun KangWonwoo JeongDaewha Hong
Published in: Langmuir : the ACS journal of surfaces and colloids (2019)
The formation of a dense zwitterionic brush through surface-initiated atom transfer radical polymerization (SI-ATRP) is a typical graft-from approach used to achieve antifouling surfaces with high fidelity; however, their air-tightness may cause inconvenience to users. In this context, activator regenerated by electron transfer (ARGET) ATRP is emerging as an alternative surface-coating tool because limited amount of air is allowed to form a dense polymer brush. However, the degree of air tolerance that can ensure a thick polymer brush has not been clearly defined, limiting its practical usage under ambient-air conditions. In this study, we investigated the SI-ARGET ATRP of carboxybetaine (CB) by changing the air conditions, along with the air-related parameters, such as the concentration of the reducing agent, the volume of the polymerization solution (PS), or the solvent composition, and correlated their effects with the poly(CB) thickness. Based on the optimized reaction conditions, a poly(CB) brush with reliable thickness was feasibly formed even under open-air conditions without a degassing step. In addition, a microliter droplet (∼100 μL) of PS was sufficient to proceed with the SI-ARGET ATRP for the covering of a poly(CB) brush on the surface area of interest. By applying an optimized SI-ARGET ATRP of CB, antifouling was feasibly achieved in the surface region of interest using an array to form a large surface area under fully exposed air conditions. In other words, optimized SI-ARGET ATRP enabled the formation of a thick poly(CB) brush on the surfaces of various dimensions under open-air conditions.
Keyphrases