Development of a Sequential Sampling Plan using Spatial Attributes of Cercospora Leaf Spot Epidemics of Table Beet in New York.
Daniel W HeckJulie R KikkertLinda E HansonSarah Jane PethybridgePublished in: Plant disease (2021)
Sampling strategies that effectively assess disease intensity in the field are important to underpin management decisions. To develop a sequential sampling plan for the incidence of Cercospora leaf spot (CLS), caused by Cercospora beticola, 31 table beet fields were assessed in the state of New York. Assessments of CLS incidence were performed in six leaves arbitrarily selected in 51 sampling locations along each of three to six linear transects per field. Spatial pattern analyses were performed, and results were used to develop sequential sampling estimation and classification models. CLS incidence (p) ranged from 0.13 to 0.92 with a median of 0.31, and beta-binomial distribution, which is reflective of aggregation, best described the spatial patterns observed. Aggregation was commonly detected (>95%) by methods using the point-process approach, runs analyses, and autocorrelation up to the fourth spatial lag. For Spatial Analysis by Distance Indices, or SADIE, 45% of the datasets were classified as a random pattern. In the sequential sampling estimation and classification models, disease units are sampled until a prespecified target is achieved. For estimation, the goal was sampling CLS incidence with a preselected coefficient of variation (C). Achieving the C = 0.1 was challenging with <51 sampling units, and only observed on datasets with incidence >0.3. Reducing the level of precision, i.e., increasing C to 0.2, allowed the preselected C to be achieved with a lower number of sampling units and with an estimated incidence ([Formula: see text]) close to the true value of p. For classification, the goal was to classify the datasets above or below prespecified thresholds (pt) used for CLS management. The average sample number, or ASN, was determined by Monte Carlo simulations, and was between 20 and 45 at disease incidence values close to pt, and approximately 11 when far from pt. Correct decisions occurred in >76% of the validation datasets. Results indicated these sequential sampling plans can be used to effectively assess CLS incidence in table beet fields.