Login / Signup

The low glutamate diet improves cognitive functioning in veterans with Gulf War Illness and resting-state EEG potentially predicts response.

Anna E KirklandMichael BaronAshley Skye VanMeterJames N BaraniukKathleen F Holton
Published in: Nutritional neuroscience (2021)
Objectives: Gulf War Illness (GWI) is a chronic, multi-symptom disorder with underlying central nervous system dysfunction and cognitive impairments. The objective of this study was to test the low glutamate diet as a novel treatment for cognitive dysfunction among those with GWI, and to explore if baseline resting-state electroencephalography (EEG) could predict cognitive outcomes.Methods: Cognitive functioning was assessed at baseline, after one-month on the diet, and across a two-week double-blind, placebo-controlled crossover challenge with monosodium glutamate (MSG) relative to placebo.Results: Significant improvements were seen after one-month on the diet in overall cognitive functioning, and in all other domains tested (FDR p < 0.05), except for memory. Challenge with MSG resulted in significant inter-individual response variability (p < 0.0001). Participants were clustered according to baseline resting-state EEG using k-means clustering to explore the inter-individual response variability. Three distinct EEG clusters were observed, and each corresponded with differential cognitive effects during challenge with MSG: cluster 1 had cognitive benefit (24% of participants), cluster 2 had cognitive detriment (42% of participants), and cluster 3 had mild/mixed effects (33% of participants).Discussion: These findings suggest that the low glutamate diet may be a beneficial treatment for cognitive impairment in GWI. Future research is needed to understand the extent to which resting-state EEG can predict response to the low glutamate diet and to explore the mechanisms behind the varied response to acute glutamate challenge.
Keyphrases
  • resting state
  • functional connectivity
  • physical activity
  • weight loss
  • double blind
  • working memory
  • type diabetes
  • rna seq
  • metabolic syndrome
  • single cell
  • cognitive impairment