Login / Signup

New Role for a Commercially Available Bioinsecticide: Bacillus thuringiensis Berliner Biodegrades the Pyrethroid Cypermethrin.

Willian Garcia BirolliAlef Dos SantosEduardo Jorge PilauEdson Rodrigues-Filho
Published in: Environmental science & technology (2021)
The microbial diversity of several environments has been explored by researchers for the biodegradation of pyrethroids. In this study, a new approach was employed aiming at the use of Bacillus thuringiensis Berliner, a strain commercially available as bioinsecticide, for Cypermethrin (Cyp) biodegradation. This bacterial strain grew in the presence of Cyp and biodegraded this xenobiotic in a liquid medium. A central composite design for surface response methodology was employed for biodegradation. Under optimized conditions (50 mg·L-1 of Cyp, pH 8.5, 37 °C), 83.5% biodegradation was determined with the production of 12.0 ± 0.6 mg·L-1 3-phenoxybenzoic acid after 5 days. Moreover, a biodegradation pathway with the 18 compounds identified by GC-MS and LC-MS/MS was proposed. Experiments in soil for 28 days at 30 °C were performed, and 16.7% Cyp degradation was determined under abiotic conditions, whereas 36.6 ± 1.9% biodegradation was observed for B. thuringiensis Berliner with the native microbiome, indicating that bioaugmentation with this strain promoted a significant increase in the Cyp decontamination. Therefore, B. thuringiensis Berliner can act as biodegrader agent and insecticide at the same time, promoting decontamination of chemicals as Cyp while maintaining the protection of crops against insects. Moreover, B. thuringiensis species can produce bacteriocins with antifungal activity, which may increase agricultural productivity.
Keyphrases
  • climate change
  • risk assessment
  • microbial community
  • zika virus
  • transcription factor