Login / Signup

Ficin-copper hybrid nanoflowers with enhanced peroxidase-like activity for colorimetric detection of biothiols.

Thinh Viet DangJee Min KimMoon Il Kim
Published in: Mikrochimica acta (2023)
The proteolytic enzyme ficin exhibits peroxidase-like activity but it is low and insufficient for real applications. Herein, we developed ficin-copper hybrid nanoflowers and demonstrated that they have significantly enhanced peroxidase-like activity of over 6-fold higher than that of free ficin, with one of the lowest K m and highest k cat values among all reported ficin-based peroxidase-like nanozymes. This was most likely caused by the synergistic catalysis of co-existing ficin and crystalline copper phosphate within nanoflower matrices having a large surface area. The nanoflowers were easily prepared by incubating ficin and copper sulfate at ambient temperature, causing coordination interactions between ficin's amine/amide moieties and copper ions, followed by concomitant anisotropic growth of petals composed of copper phosphate crystals with ficin. When compared to free ficin and natural horseradish peroxidase, the resulting nanoflowers' affinity toward H 2 O 2 was greatly increased, yielding K m values of half and one-tenth, respectively, as well as noticeably improved stability. The nanoflowers were then applied to colorimetric determination of biological thiols (biothiols), such as cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), based on their inhibition of nanoflowers' peroxidase-like activity, producing reduced color intensities as the concentration of biothiols increased. This strategy achieved highly sensitive colorimetric determinations of Cys, GSH, and Hcy after only 25-min incubation. Additionally, using this technique, biothiols in human serum were successfully determined with excellent precision, suggesting the potential application of this technology in clinical settings, particularly in point-of-care testing environments.
Keyphrases
  • fluorescent probe
  • hydrogen peroxide
  • living cells
  • gold nanoparticles
  • oxide nanoparticles
  • nitric oxide
  • sensitive detection
  • label free
  • simultaneous determination
  • capillary electrophoresis
  • tandem mass spectrometry