In Silico Prediction of a Multitope Vaccine against Moraxella catarrhalis: Reverse Vaccinology and Immunoinformatics.
Mohamed A SoltanNada ElbassiounyHelmy GamalEslam B ElkaeedRefaat A EidMuhammad Alaa EldeenAhmed Ali Al-KarmalawyPublished in: Vaccines (2021)
Moraxella catarrhalis (M. catarrhalis) is a Gram-negative bacterium that can cause serious respiratory tract infections and middle ear infections in children and adults. M. catarrhalis has demonstrated an increasing rate of antibiotic resistance in the last few years, thus development of an effective vaccine is a major health priority. We report here a novel designed multitope vaccine based on the mapped epitopes of the vaccine candidates filtered out of the whole proteome of M. catarrhalis. After analysis of 1615 proteins using a reverse vaccinology approach, only two proteins (outer membrane protein assembly factor BamA and LPS assembly protein LptD) were nominated as potential vaccine candidates. These proteins were found to be essential, outer membrane, virulent and non-human homologs with appropriate molecular weight and high antigenicity score. For each protein, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell lymphocyte (BCL) epitopes were predicted and confirmed to be highly antigenic and cover conserved regions of the proteins. The mapped epitopes constituted the base of the designed multitope vaccine where suitable linkers were added to conjugate them. Additionally, beta defensin adjuvant and pan-HLA DR-binding epitope (PADRE) peptide were also incorporated into the construct to improve the stimulated immune response. The constructed multitope vaccine was analyzed for its physicochemical, structural and immunological characteristics and it was found to be antigenic, soluble, stable, non-allergenic and have a high affinity to its target receptor. Although the in silico analysis of the current study revealed that the designed multitope vaccine has the ability to trigger a specific immune response against M. catarrhalis, additional translational research is required to confirm the effectiveness of the designed vaccine.