Login / Signup

Regression based fast multi-trait genome-wide QTL analysis.

Md Jahangir AlamMd Ripter HossainS M Shahinul IslamMd Nurul Haque Mollah
Published in: Journal of bioinformatics and computational biology (2021)
Multivariate simple interval mapping (SIM) is one of the most popular approaches for multiple quantitative trait locus (QTL) analysis. Both maximum likelihood (ML) and least squares (LS) multivariate regression (MVR) are widely used methods for multi-trait SIM. ML-based MVR (MVR-ML) is an expectation maximization (EM) algorithm based iterative and complex time-consuming approach. Although the LS-based MVR (MVR-LS) approach is not an iterative process, the calculation of likelihood ratio (LR) statistic in MVR-LS is also a time-consuming complex process. We have introduced a new approach (called FastMtQTL) for multi-trait QTL analysis based on the assumption of multivariate normal distribution of phenotypic observations. Our proposed method can identify almost the same QTL positions as those identified by the existing methods. Moreover, the proposed method takes comparatively less computation time because of the simplicity in the calculation of LR statistic by this method. In the proposed method, LR statistic is calculated only using the sample variance-covariance matrix of phenotypes and the conditional probability of QTL genotype given the marker genotypes. This improvement in computation time is advantageous when the numbers of phenotypes and individuals are larger, and the markers are very dense resulting in a QTL mapping with a bigger dataset.
Keyphrases
  • genome wide
  • high density
  • high resolution
  • dna methylation
  • data analysis
  • gene expression
  • mass spectrometry
  • computed tomography
  • deep learning
  • image quality