Deletion of AT1a (Angiotensin II Type 1a) Receptor or Inhibition of Angiotensinogen Synthesis Attenuates Thoracic Aortopathies in Fibrillin1C1041G/+ Mice.
Jeff Z ChenHisashi Sawada (澤田悠)Dien YeYuriko KatsumataMasayoshi KukidaSatoko Ohno-UrabeJessica J MoorleghenMichael K FranklinDeborah A HowattMary B SheppardAdam E MullickHong S Lu (吕红)Alan DaughertyPublished in: Arteriosclerosis, thrombosis, and vascular biology (2021)
Objective: A cardinal feature of Marfan syndrome is thoracic aortic aneurysm. The contribution of the renin-angiotensin system via AT1aR (Ang II [angiotensin II] receptor type 1a) to thoracic aortic aneurysm progression remains controversial because the beneficial effects of angiotensin receptor blockers have been ascribed to off-target effects. This study used genetic and pharmacological modes of attenuating angiotensin receptor and ligand, respectively, to determine their roles on thoracic aortic aneurysm in mice with fibrillin-1 haploinsufficiency (Fbn1C1041G/+).
Approach and Results: Thoracic aortic aneurysm in Fbn1C1041G/+ mice was found to be strikingly sexual dimorphic. Males displayed aortic dilation over 12 months while aortic dilation in Fbn1C1041G/+ females did not differ significantly from wild-type mice. To determine the role of AT1aR, Fbn1C1041G/+ mice that were either +/+ or -/- for AT1aR were generated. AT1aR deletion reduced expansion of ascending aorta and aortic root diameter from 1 to 12 months of age in males. Medial thickening and elastin fragmentation were attenuated. An antisense oligonucleotide against angiotensinogen was administered to male Fbn1C1041G/+ mice to determine the effects of Ang II depletion. Antisense oligonucleotide against angiotensinogen administration attenuated dilation of the ascending aorta and aortic root and reduced extracellular remodeling. Aortic transcriptome analyses identified potential targets by which inhibition of the renin-angiotensin system reduced aortic dilation in Fbn1C1041G/+ mice.
Conclusions: Deletion of AT1aR or inhibition of Ang II production exerted similar effects in attenuating pathologies in the proximal thoracic aorta of male Fbn1C1041G/+ mice. Inhibition of the renin-angiotensin system attenuated dysregulation of genes within the aorta related to pathology of Fbn1C1041G/+ mice.
Keyphrases
- angiotensin ii
- aortic aneurysm
- aortic valve
- pulmonary artery
- wild type
- angiotensin converting enzyme
- high fat diet induced
- aortic dissection
- spinal cord
- left ventricular
- vascular smooth muscle cells
- type diabetes
- genome wide
- machine learning
- gene expression
- coronary artery
- mental health
- metabolic syndrome
- rna seq
- insulin resistance
- single cell
- dna methylation
- adipose tissue
- nucleic acid