Login / Signup

Impact of 3MeV Energy Proton Particles on Mid-IR QCLs.

Petrişor Gabriel BleotuLaura MihaiDan SporeaAdelina SporeaMihai StraticiucIon Burducea
Published in: Nanomaterials (Basel, Switzerland) (2023)
This paper reports the results obtained for a distributed-feedback quantum cascade laser (DFB-QCL) exposed to different fluences of proton particles: 10 14 , 10 15 and 10 16 p/cm 2 . Dedicated laboratory setups were developed to assess the irradiation-induced changes in this device. Multiple parameters defining the QCL performances were investigated prior to and following each irradiation step: (i) voltage-driving current; (ii) emitted optical power-driving current; (iii) central emitting wavelength-driving current; (iv) emitted spectrum-driving current; (v) transversal mode structure-driving current, maintaining the system operating temperature at 20 °C. The QCL system presented, before irradiation, two emission peaks: a central emission peak and a side peak. After proton irradiation, the QCL presented a spectral shift, and the ratio between the two peaks also changed. Even though, after irradiation, the tunning spectral range was reduced, at the end of the tests, the system was still functional.
Keyphrases
  • optical coherence tomography
  • high resolution
  • mass spectrometry
  • quantum dots
  • drug induced