Water Diffusion Proceeds via a Hydrogen-Bond Jump Exchange Mechanism.
Axel GomezZeke A PiskulichWard H ThompsonDamien LaagePublished in: The journal of physical chemistry letters (2022)
The self-diffusion of water molecules plays a key part in a broad range of essential processes in biochemistry, medical imaging, material science, and engineering. However, its molecular mechanism and the role played by the water hydrogen-bond network rearrangements are not known. Here we combine molecular dynamics simulations and analytic modeling to determine the molecular mechanism of water diffusion. We establish a quantitative connection between the water diffusion coefficient and hydrogen-bond jump exchanges, and identify the features that determine the underlying energetic barrier. We thus provide a unified framework to understand the coupling between translational, rotational, and hydrogen-bond dynamics in liquid water. It explains why these different dynamics do not necessarily exhibit identical temperature dependences although they all result from the same hydrogen-bond exchange events. The consequences for the understanding of water diffusion in supercooled conditions and for water transport in complex aqueous systems, including ionic, biological, and confined solutions, are discussed.