Login / Signup

Hybrid metagenome assemblies link carbohydrate structure with function in the human gut microbiome.

Anuradha RaviPerla Troncoso-ReyJennifer Ahn-JarvisKendall R CorbinSuzanne HarrisHannah HarrisAlp AydinGemma L KayThanh Le VietRachel GilroyMark J PallenAndrew J PageJustin O'GradyFrederick J Warren
Published in: Communications biology (2022)
Complex carbohydrates that escape small intestinal digestion, are broken down in the large intestine by enzymes encoded by the gut microbiome. This is a symbiotic relationship between microbes and host, resulting in metabolic products that influence host health and are exploited by other microbes. However, the role of carbohydrate structure in directing microbiota community composition and the succession of carbohydrate-degrading microbes, is not fully understood. In this study we evaluate species-level compositional variation within a single microbiome in response to six structurally distinct carbohydrates in a controlled model gut using hybrid metagenome assemblies. We identified 509 high-quality metagenome-assembled genomes (MAGs) belonging to ten bacterial classes and 28 bacterial families. Bacterial species identified as carrying genes encoding starch binding modules increased in abundance in response to starches. The use of hybrid metagenomics has allowed identification of several uncultured species with the functional potential to degrade starch substrates for future study.
Keyphrases
  • healthcare
  • mental health
  • endothelial cells
  • public health
  • microbial community
  • gene expression
  • genome wide
  • bioinformatics analysis
  • dna methylation
  • health information
  • wastewater treatment