Aerosol Doping System for Microscale Seamless p-n Patterning of Carbon Nanotube Films.
Daichi SuzukiNao TerasakiPublished in: ACS applied materials & interfaces (2024)
Carbon nanotube (CNT) films are extensively researched as a promising material for wearable thermoelectric generators (TEGs) owing to their good flexibility and high thermoelectric conversion ability. Miniaturizing a pair of p- and n-type thermocouples and increasing the number of repeating elements can effectively increase the power of TEGs. However, conventional p-n patterning methods, such as dipping and printing, have a coarse resolution at the submillimeter level, thereby limiting the miniaturization rate. This study developed an aerosol doping system as a fine n-doping method. A dopant aerosol with a <3 μm diameter was formed through ultrasonic nebulization and air separation, while n-doping was achieved by exposing the CNT film to the dopant aerosol. Microscale p-n patterning of 1 μm was achieved through exposure using small-sized aerosols at an exceptionally slow rate of 3 Å/min. This resolution is 100 times higher than those of conventional p-n patterning methods. The developed aerosol doping system for CNTs can also be used on organic semiconductor materials, such as PEDOT/PSS and perovskite materials. Therefore, it has the potential to significantly impact the realization of Internet of Things (IoT) terminals, such as flexible TEGs, transistors, and solar cells.