Toughening Nanoparticle Films via Polymer Infiltration and Confinement.
Yijie JiangJyo Lyn HorDaeyeon LeeKevin T TurnerPublished in: ACS applied materials & interfaces (2018)
Disordered nanoparticle films have significant technological applications as coatings and membranes. Unfortunately, their use to date has been limited by poor mechanical properties, notably low fracture toughness, which often results in brittle failure and cracking. We demonstrate that the fracture toughness of TiO2 nanoparticle films can be increased by nearly an order of magnitude through infiltration of polystyrene into the film. The fracture properties of films with various polymer volume fractions were characterized via nanoindentation pillar-splitting tests. Significant toughening is observed even at low volume fractions of polymer, which allows the nanoparticle packing to be toughened while retaining porosity. Moreover, higher-molecular-weight polymers lead to greater toughening at low polymer volume fractions. The toughness enhancement observed in polymer-infiltrated nanoparticle films may be attributed to multiple factors, including an increase in the area and strength of interparticle contacts, deflection and blunting of cracks during failure, and confinement-induced polymer bridging of nanoparticles. Our findings demonstrate that polymer infiltration is a highly effective route for reinforcing nanoparticle packings while retaining porosity.