Login / Signup

Disentangling the potential effects of land-use and climate change on stream conditions.

Kelly Oliver MaloneyKevin P KrauseClaire BuchananLauren E HayGregory J McCabeZachary M SmithTerry L SohlJohn A Young
Published in: Global change biology (2020)
Land-use and climate change are significantly affecting stream ecosystems, yet understanding of their long-term impacts is hindered by the few studies that have simultaneously investigated their interaction and high variability among future projections. We modeled possible effects of a suite of 2030, 2060, and 2090 land-use and climate scenarios on the condition of 70,772 small streams in the Chesapeake Bay watershed, United States. The Chesapeake Basin-wide Index of Biotic Integrity, a benthic macroinvertebrate multimetric index, was used to represent stream condition. Land-use scenarios included four Special Report on Emissions Scenarios (A1B, A2, B1, and B2) representing a range of potential landscape futures. Future climate scenarios included quartiles of future climate changes from downscaled Coupled Model Intercomparison Project - Phase 5 (CMIP5) and a watershed-wide uniform scenario (Lynch2016). We employed random forests analysis to model individual and combined effects of land-use and climate change on stream conditions. Individual scenarios suggest that by 2090, watershed-wide conditions may exhibit anywhere from large degradations (e.g., scenarios A1B, A2, and the CMIP5 25th percentile) to small degradations (e.g., scenarios B1, B2, and Lynch2016). Combined land-use and climate change scenarios highlighted their interaction and predicted, by 2090, watershed-wide degradation in 16.2% (A2 CMIP5 25th percentile) to 1.0% (B2 Lynch2016) of stream kilometers. A goal for the Chesapeake Bay watershed is to restore 10% of stream kilometers over a 2008 baseline; our results suggest meeting and sustaining this goal until 2090 may require improvement in 11.0%-26.2% of stream kilometers, dependent on land-use and climate scenario. These results highlight inherent variability among scenarios and the resultant uncertainty of predicted conditions, which reinforces the need to incorporate multiple scenarios of both land-use (e.g., development, agriculture, etc.) and climate change in future studies to encapsulate the range of potential future conditions.
Keyphrases
  • climate change
  • human health
  • current status
  • high resolution