Serum PD-1/PD-L1 Levels, Tumor Expression and PD-L1 Somatic Mutations in HER2-Positive and Triple Negative Normal-Like Feline Mammary Carcinoma Subtypes.
Catarina NascimentoAna Catarina UrbanoAndreia GameiroJoão FerreiraJorge CorreiaFernando FerreiraPublished in: Cancers (2020)
Tumor microenvironment has gained great relevance due to its ability to regulate distinct checkpoints mediators, orchestrating tumor progression. Serum programmed cell death protein-1 (PD-1) and programmed death ligand-1 (PD-L1) levels were compared with healthy controls and with serum cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and tumor necrosis factor-alpha (TNF-α) levels in order to understand the role of PD-1/PD-L1 axis in cats with mammary carcinoma. PD-1 and PD-L1 expression was evaluated in tumor-infiltrating lymphocytes (TILs) and cancer cells, as the presence of somatic mutations. Results showed that serum PD-1 and PD-L1 levels were significantly higher in cats with HER2-positive (p = 0.017; p = 0.032) and triple negative (TN) normal-like mammary carcinomas (p = 0.004; p = 0.015), showing a strong positive correlation between serum CTLA-4 and TNF-α levels. In tumors, PD-L1 expression in cancer cells was significantly higher in HER2-positive samples than in TN normal-like tumors (p = 0.010), as the percentage of PD-L1-positive TILs (p = 0.037). PD-L1 gene sequencing identified two heterozygous mutations in exon 4 (A245T; V252M) and one in exon 5 (T267S). In summary, results support the use of spontaneous feline mammary carcinoma as a model for human breast cancer and suggest that the development of monoclonal antibodies may be a therapeutic strategy.