Login / Signup

The Effect of Polyethylene Glycol on the Non-Isothermal Crystallization of Poly(L-lactide) and Poly(D-lactide) Blends.

Panthima PhuangthongWenwei LiJun ShenMohammadreza NofarPatnarin WorajittiphonYottha Srithep
Published in: Polymers (2024)
The formation of polylactide stereocomplex (sc-PLA), involving the blending of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), enhances PLA materials by making them stronger and more heat-resistant. This study investigated the competitive crystallization behavior of homocrystals (HCs) and stereocomplex crystals (SCs) in a 50/50 PLLA/PDLA blend with added polyethylene glycol (PEG). PEG, with molecular weights of 400 g/mol and 35,000 g/mol, was incorporated at concentrations ranging from 5% to 20% by weight. Differential scanning calorimetry (DSC) analysis revealed that PEG increased the crystallization temperature, promoted SC formation, and inhibited HC formation. PEG also acted as a plasticizer, lowering both melting and crystallization temperatures. The second heating DSC curve showed that the pure PLLA/PDLA blend had a 57.1% fraction of SC while adding 5% PEG with a molecular weight of 400 g/mol resulted in complete SC formation. In contrast, PEG with a molecular weight of 35,000 g/mol was less effective, allowing some HC formation. Additionally, PEG consistently promoted SC formation across various cooling rates (2, 5, 10, or 20 °C/min), demonstrating a robust influence under different conditions.
Keyphrases
  • drug delivery
  • body mass index
  • physical activity
  • single molecule