Leveraging low-density crossbred genotypes to offset crossbred phenotypes and their impact on purebred predictions.
Natália Galoro LeiteChing-Yi ChenWilliam O HerringJustin HollShogo TsurutaDaniela LourencoPublished in: Journal of animal science (2022)
The objectives of this study were to 1) investigate the predictability and bias of genomic breeding values (GEBV) of purebred (PB) sires for CB performance when CB genotypes imputed from a low-density panel are available, 2) assess if the availability of those CB genotypes can be used to partially offset CB phenotypic recording, and 3) investigate the impact of including imputed CB genotypes in genomic analyses when using the algorithm for proven and young (APY). Two pig populations with up to 207,375 PB and 32,893 CB phenotypic records per trait and 138,026 PB and 32,893 CB genotypes were evaluated. Purebred sires were genotyped for a 50K panel, whereas CB animals were genotyped for a low-density panel of 600 SNP and imputed to 50K. The predictability and bias of GEBV of PB sires for backfat thickness (BFX) and average daily gain recorded (ADGX) recorded on CB animals were assessed when CB genotypes were available or not in the analyses. In the first set of analyses, direct inverses of the genomic relationship matrix (G) were used with phenotypic datasets truncated at different time points. In the next step, we evaluated the APY algorithm with core compositions differing in CB genotype contributions. After that, the performance of core compositions was compared with an analysis using a random PB core from a purely PB genomic set. The number of rounds to convergence was recorded for all APY analyses. With the direct inverse of G in the first set of analyses, adding CB genotypes imputed from a low-density panel (600 SNP) did not improve predictability or reduce the bias of PB sires' GEBV for CB performance, even for sires with fewer CB progeny phenotypes in the analysis. That indicates that the inclusion of CB genotypes primarily used for inferring pedigree in commercial farms is of no benefit to offset CB phenotyping. When CB genotypes were incorporated into APY, a random core composition or a core with no CB genotypes reduced bias and the number of rounds to convergence but did not affect predictability. Still, a PB random core composition from a genomic set with only PB genotypes resulted in the highest predictability and the smallest number of rounds to convergence, although bias increased. Genotyping CB individuals for low-density panels is a valuable identification tool for linking CB phenotypes to pedigree; however, the inclusion of those CB genotypes imputed from a low-density panel (600 SNP) might not benefit genomic predictions for PB individuals or offset CB phenotyping for the evaluated CB performance traits. Further studies will help understand the usefulness of those imputed CB genotypes for traits with lower PB-CB genetic correlations and traits not recorded in the PB environment, such as mortality and disease traits.