Login / Signup

Glucose transport in lymphocytes.

Florian LangYogesh SinghMadhuri S SalkerKe MaAleksandra A PandyraPhilipp A LangKarl S Lang
Published in: Pflugers Archiv : European journal of physiology (2020)
Glucose uptake into lymphocytes is accomplished by non-concentrative glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4, GLUT6) and/or by the Na+-coupled glucose carrier SGLT1. The latter accumulates glucose against glucose gradients and is still effective at very low extracellular glucose concentrations. Signaling involved in SGLT1 expression and activity includes protein kinase A (PKA), protein kinase C (PKC), serum- and glucocorticoid-inducible kinase (SGK1), AMP-activated kinase (AMPK), and Janus kinases (JAK2 and JAK3). Glucose taken up is partially stored as glycogen. In hypoxic environments, such as in tumors as well as infected and inflamed tissues, lymphocytes depend on energy production from glycogen-dependent glycolysis. The lack of SGLT1 may compromise glycogen storage and thus lymphocyte survival and function in hypoxic tissues. Accordingly, in mice, genetic knockout of sglt1 compromised bacterial clearance following Listeria monocytogenes infection leading to an invariably lethal course of the disease. Whether the effect was due to the lack of sglt1 in lymphocytes or in other cell types still remains to be determined. Clearly, additional experimental effort is required to define the role of glucose transport by GLUTs and particularly by SGLT1 for lymphocyte survival and function, as well as orchestration of the host defense against tumors and bacterial infections.
Keyphrases
  • protein kinase
  • blood glucose
  • peripheral blood
  • gene expression
  • type diabetes
  • blood pressure
  • adipose tissue
  • listeria monocytogenes
  • mesenchymal stem cells
  • long non coding rna