Login / Signup

Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging.

Jianian LinZongyue ChengGuang YangMeng Cui
Published in: Nature communications (2022)
To understand the function and mechanism of biological systems, it is crucial to observe the cellular dynamics at high spatiotemporal resolutions within live animals. The recent advances in genetically encoded function indicators have significantly improved the response rate to a near millisecond time scale. However, the widely employed in vivo imaging systems often lack the temporal solution to capture the fast biological dynamics. To broadly enable the capability of high-speed in vivo deep-tissue imaging, we developed an optical gearbox. As an add-on module, the optical gearbox can convert the common multiphoton imaging systems for versatile multiscale high-throughput imaging applications. In this work, we demonstrate in vivo 2D and 3D function imaging in mammalian brains at frame rates ranging from 50 to 1000 Hz. The optical gearbox's versatility and compatibility with the widely employed imaging components will be highly valuable to a variety of deep tissue imaging applications.
Keyphrases
  • high resolution
  • high speed
  • high throughput
  • mass spectrometry
  • single molecule