GaAs/GaAsPBi core-shell nanowires grown by molecular beam epitaxy.
Chalermchai HimwasV YordsriC ThanachayanontMaria TchernychevaS PanyakeowSongphol KanjanachuchaiPublished in: Nanotechnology (2021)
We report on the growth, structural, and optical properties of GaAs/GaAsPBi core-shell nanowires (NWs) synthesized by molecular beam epitaxy (MBE). The structure presents advantageous optical properties, in particular, for near- and mid-infrared optical applications. Scanning electron microscopy shows that although the stems of GaAs/GaAsP and GaAs/GaAsBi core-shell NWs preserve the hexagonal prism shape, the GaAs/GaAsPBi core-shell NWs develop a quasi-three-fold orientational symmetry affected by the hexagonal prismatic core. Detailed structural analyses of a GaAs/GaAsPBi core-shell stem show that it crystallized with zincblende structure with a nominal shell composition of GaAs0.617P0.362Bi0.021. Photoluminescence of GaAs/GaAsPBi core-shell NWs shows the luminescent peak at 1.02 eV with high internal quantum efficiency at room temperature (IQERT∼ 6%) superior to those of MBE-grown GaAs core NWs and GaAsPBi multiple quantum wells earlier reported. Energy-dispersive x-ray spectroscopy performed on the GaAs/GaAsPBi core-shell NWs yields an estimated bandgap different from the optically measured value. We attribute this discrepancy to the NW compositional fluctuations that also may explain the high IQERT.