Login / Signup

The Chemical Bond: When Atom Size Instead of Electronegativity Difference Determines Trend in Bond Strength.

Eva BlokkerXiaobo SunJordi PoaterJ Martijn van der SchuurTrevor A HamlinFriedrich Matthias Bickelhaupt
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
We have quantum chemically analyzed element-element bonds of archetypal Hn X-YHn molecules (X, Y=C, N, O, F, Si, P, S, Cl, Br, I), using density functional theory. One purpose is to obtain a set of consistent homolytic bond dissociation energies (BDE) for establishing accurate trends across the periodic table. The main objective is to elucidate the underlying physical factors behind these chemical bonding trends. On one hand, we confirm that, along a period (e. g., from C-C to C-F), bonds strengthen because the electronegativity difference across the bond increases. But, down a period, our findings constitute a paradigm shift. From C-F to C-I, for example, bonds do become weaker, however, not because of the decreasing electronegativity difference. Instead, we show that the effective atom size (via steric Pauli repulsion) is the causal factor behind bond weakening in this series, and behind the weakening in orbital interactions at the equilibrium distance. We discuss the actual bonding mechanism and the importance of analyzing this mechanism as a function of the bond distance.
Keyphrases
  • molecular dynamics
  • density functional theory
  • transition metal
  • electron transfer
  • mental health
  • high resolution