The C 2 H 2 Transcription Factor Con7 Regulates Vegetative Growth, Cell Wall Integrity, Oxidative Stress, Asexual Sporulation, Appressorium and Hyphopodium Formation, and Pathogenicity in Colletotrichum graminicola and Colletotrichum siamense .
Shuangzhen ZhouShayu LiuChenchen GuoHanwen WeiZhihui HeZhiqiang LiuXiaoyu LiPublished in: Journal of fungi (Basel, Switzerland) (2024)
The Colletotrichum genus is listed as one of the top 10 important plant pathogens, causing significant economic losses worldwide. The C 2 H 2 zinc finger protein serves as a crucial transcription factor regulating growth and development in fungi. In this study, we identified two C 2 H 2 transcription factors, CgrCon7 and CsCon7, in Colletotrichum graminicola and Colletotrichum siamense , as the orthologs of Con7p in Magnaporthe oryzae . Both CgrCon7 and CsCon7 have a typical C 2 H 2 zinc finger domain and exhibit visible nuclear localization. Disrupting Cgrcon7 or Cscon7 led to a decreased growth rate, changes in cell wall integrity, and low tolerance to H 2 O 2 . Moreover, the deletion of Cgrcon7 or Cscon7 dramatically decreased conidial production, and their knockout mutants also lost the ability to produce appressoria and hyphopodia. Pathogenicity assays displayed that deleting Cgrcon7 or Cscon7 resulted in a complete loss of virulence. Transcriptome analysis showed that CgrCon7 and CsCon7 were involved in regulating many genes related to ROS detoxification, chitin synthesis, and cell wall degradation, etc. In conclusion, CgrCon7 and CsCon7 act as master transcription factors coordinating vegetative growth, oxidative stress response, cell wall integrity, asexual sporulation, appressorium formation, and pathogenicity in C. graminicola and C. siamense .