Post-Flood Impacts on Occurrence and Distribution of Mycotoxin-Producing Aspergilli from the Sections Circumdati, Flavi, and Nigri in Indoor Environment.
Daniela JakšićMiranda SertićSándor KocsubéIvana KovačevićDomagoj KiferAna MornarBiljana NigovićŠegvić Klarić MajaPublished in: Journal of fungi (Basel, Switzerland) (2020)
Mycotoxin-producing Aspergilli (Circumdati, Flavi, and Nigri), usually associated with contaminated food, may also cause respiratory disorders and are insufficiently studied in water-damaged indoor environments. Airborne (N = 71) and dust borne (N = 76) Aspergilli collected at post-flood and control locations in Croatia resulted in eleven different species based on their calmodulin marker: A. ochraceus, A. ostianus, A. pallidofulvus, A. sclerotiorum, and A. westerdijkiae (Circumdati); A. flavus (Flavi); and A. tubingensis, A. welwitschiae, A. niger, A. piperis, and A. uvarum (Nigri). Most of the airborne (73%) and dust borne (54%) isolates were found at post-flood locations, and the highest concentrations measured in indoor air (5720 colony-forming units (CFU)/m3) and dust (2.5 × 105 CFU/g) were up to twenty times higher than in the control locations. A. flavus dominated among airborne isolates (25%) at the unrepaired locations, while 56% of the dust borne Aspergilli were identified as A. tubingensis and A. welwitschiae. The ability of identified isolates to produce mycotoxins aflatoxin B1 (AFB1), fumonisin B2 (FB2), and ochratoxin A were assessed by LC-MS analysis. All ochratoxin A (OTA)-producing Circumdati belonged to A. westerdijkiae (13.7 ± 15.81 µg/mL); in the section, FlaviA. flavus produced AFB1 (2.51 ± 5.31 µg/mL), while A. welwitschiae and A. niger (section Nigri) produced FB2 (6.76 ± 13.51 µg/mL and 11.24 ± 18.30 µg/mL, respectively). Water damage dominantly supported the occurrence of aflatoxigenic A. flavus in indoor environments. Yet unresolved, the causal relationship of exposure to indoor Aspergilli and adverse health effects may support the significance of this research.