Login / Signup

The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.

Zhaoyan Zhang
Published in: The Journal of the Acoustical Society of America (2023)
The goal of this computational study is to quantify global effects of vocal tract constriction at various locations (false vocal folds, aryepiglottic folds, pharynx, oral cavity, and lips) on the voice source across a large range of vocal fold conditions. The results showed that while inclusion of a uniform vocal tract had notable effects on the voice source, further constricting the vocal tract only had small effects except for conditions of extreme constriction, at which constrictions at any location along the vocal tract decreased the mean and peak-to-peak amplitude of the glottal flow waveform. Although narrowing in the epilarynx increased the normalized maximum flow declination rate, vocal tract constriction in general slightly reduced the source strength and high-frequency harmonic production at the glottis, except for a limited set of vocal fold conditions (e.g., soft, long vocal folds subject to relatively high pressure). This suggests that simultaneous laryngeal and vocal tract adjustments are required to maximize source-filter interaction. While vocal tract adjustments are often assumed to improve voice production, our results indicate that such improvements are mainly due to changes in vocal tract acoustic response rather than improved voice production at the glottis.
Keyphrases
  • high frequency
  • neuropathic pain
  • spinal cord injury
  • spinal cord
  • transcranial magnetic stimulation
  • climate change