Login / Signup

Does mindfulness training modulate the influence of spatial attention on the processing of intracutaneous electrical stimuli?

Rob H J Van der LubbeElian De KleineKarlein M G SchreursErnst T Bohlmeijer
Published in: PloS one (2018)
Mindfulness based stress reduction (MBSR) training has been proposed to improve attentional skills by modulating thalamo-cortical loops that affect the sensitivity of relevant cortical areas like the somatosensory cortex. This modulation may be reflected in the electroencephalographic (EEG) alpha rhythm, and could affect the processing of subsequently applied intracutaneous electrical stimuli. Participants took part in an MBSR training and participated in two EEG sessions. EEG was measured in variants of an endogenous orienting paradigm in which attention had to be directed to the left or right forearm. After the orienting interval, the electrical stimulus was applied, equally likely on the attended or the unattended forearm. One group of participants took part in the EEG session before and after the training, while the other group took part after the training, and another time, eight weeks later. The influence of the MBSR training and spatial attention were examined with behavioral measures, lateralized alpha power within the orienting interval, and with event-related potentials (ERPs) evoked by the electrical stimuli. Self-reported mindfulness was clearly affected by the training, but no influence was found on other behavioral measures. Alpha power was clearly lateralized due to spatial attention and several ERP components (N130, N180, P340) were modulated by spatial attention but no support was found for an influence of the MBSR training. Finally, analyses revealed that individual differences in training time modulated some of the observed effects, but no support was found for an influence on attentional orienting.
Keyphrases
  • working memory
  • virtual reality
  • chronic pain
  • transcranial direct current stimulation
  • gene expression
  • resting state
  • signaling pathway
  • single cell