Login / Signup

Ultrasound standing wave spatial patterning of human umbilical vein endothelial cells for 3D micro-vascular networks formation.

Huong Thi LeHuu Lam PhanAndreas LenshofVan Thuy DuongCho-Long ChoiChaenyung ChaThomas LaurellKyo In Koo
Published in: Biofabrication (2023)
Generating functional and perfusable micro-vascular networks is an important goal for the fabrication of large and three-dimensional tissues. Up to now, it is a complicated multitask involving several different factors such as time consuming, cells survival, micro-diameter vasculature and strict alignment. Here, we propose a technique combining multi-material extrusion and ultrasound standing wave forces to create a network structure of human umbilical vein endothelial cells within a mixture of calcium alginate and decellularized extracellular matrix. The functionality of the matured microvasculature networks was demonstrated through the enhancement of cell-cell adhesion, angiogenesis process, and perfusion tests with microparticles, FITC-dextran, and whole mouse blood. Moreover, animal experiments exhibited the implantability including that the pre-existing blood vessels of the host sprout towards the preformed vessels of the scaffold over time and the microvessels inside the implanted scaffold matured from empty tubular structures to functional blood-carrying microvessels in two weeks.
Keyphrases