Login / Signup

Microwave-Assisted Synthesis of NaCoPO4 Red-Phase and Initial Characterization as High Voltage Cathode for Sodium-Ion Batteries.

Arturo GutierrezSoojeong KimTimothy T FisterChristopher S Johnson
Published in: ACS applied materials & interfaces (2017)
Transition metal-containing polyanion compounds are attractive for use as cathode materials in sodium-ion batteries (SIB) because they possess elevated higher intrinsic electrochemical potentials versus oxide analogs given the same Mn+/(n+1)+ redox couple, which leads to higher energy densities. NaMPO4 (M = transition metal) compounds have a driving force to form into the electrochemically inactive maricite phase when using conventional methods. Herein we report on the synthesis of a NaCoPO4 (NCP) polymorph ("Red"-phase) by a microwave-assisted solvothermal process at 200 °C using tetraethylene glycol as the solvent. Ex situ XRD, XANES, and electrochemical data are used to determine the reversibility of the Co2+/3+ redox center.
Keyphrases
  • ion batteries
  • transition metal
  • ionic liquid
  • gold nanoparticles
  • molecularly imprinted
  • electron transfer
  • label free
  • single molecule
  • machine learning
  • artificial intelligence
  • tandem mass spectrometry