Login / Signup

Tailoring Surface Properties through in Situ Functionality Gradients in Reactively Modified Poly(2-vinyl-4,4-dimethyl azlactone) Thin Films.

Bethany AdenDayton P StreetBenjamin W HopkinsBradley S LokitzS Michael Kilbey
Published in: Langmuir : the ACS journal of surfaces and colloids (2018)
Generating physical or chemical gradients in thin-film scaffolds is an efficient approach for screening and optimizing an interfacial structure or chemical functionality to create tailored surfaces that are useful because of their wetting, antifouling, or barrier properties. The relationship between the structure of poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes created by the preferential assembly of poly(glycidyl methacrylate)- block-PVDMA diblock copolymers and the ability to chemically modify the PVDMA chains in situ to create a gradient in functionality are examined to investigate how the extent of functionalization affects the interfacial and surface properties. The introduction of a chemical gradient by controlled immersion allows reactive modification to generate position-dependent properties that are assessed by ellipsometry, attenuated total reflectance-Fourier transform infrared spectroscopy, contact angle measurements, and atomic force microscopy imaging. After functionalization of the azlactone rings with n-alkyl amines, ellipsometry confirms an increase in thickness and contact angle measurements support an increase in hydrophobicity along the substrate. These results are used to establish relationships between layer thickness, reaction time, position, and the extent of functionalization and demonstrate that gradual immersion into the functionalizing solution results in a linear change in chemical functionality along the surface. These findings broadly support efforts to produce tailored surfaces by in situ chemical modification, having application as tailored membranes, protein resistant surfaces, or sensors.
Keyphrases