The unnatural and uncontrolled increase of brain cells is called brain tumors, leading to human health danger. Magnetic resonance imaging (MRI) is widely applied for classifying and detecting brain tumors, due to its better resolution. In general, medical specialists require more details regarding the size, type, and changes in small lesions for effective classification. The timely and exact diagnosis plays a major role in the efficient treatment of patients. Therefore, in this research, an efficient hybrid optimization algorithm is implemented for brain tumor segmentation and classification. The convolutional neural network (CNN) features are extracted to perform a better classification. The classification is performed by considering the extracted features as the input of the deep residual network (DRN), in which the training is performed using the proposed chronological Jaya honey badger algorithm (CJHBA). The proposed CJHBA is the integration of the Jaya algorithm, honey badger algorithm (HBA), and chronological concept. The performance is evaluated using the BRATS 2018 and Figshare datasets, in which the maximum accuracy, sensitivity, and specificity are attained using the BRATS dataset with values 0.9210, 0.9313, and 0.9284, respectively.