Login / Signup

Investigating New Reactivities Enabled by Polariton Photochemistry.

Arkajit MandalPengfei Huo
Published in: The journal of physical chemistry letters (2019)
We perform quantum dynamics simulations to investigate new chemical reactivities enabled by cavity quantum electrodynamics. The quantum light-matter interactions between the molecule and the quantized radiation mode inside an optical cavity create a set of hybridized electronic-photonic states, so-called polaritons. The polaritonic states adapt the curvatures from both the ground and the excited electronic states, opening up new possibilities to control photochemical reactions by exploiting intrinsic quantum behaviors of light-matter interactions. With quantum dynamics simulations, we demonstrate that the selectivity of a model photoisomerization reaction can be controlled by tuning the photon frequency of the cavity mode or the light-matter coupling strength, providing new ways to manipulate chemical reactions via the light-matter interaction. We further investigate collective quantum effects enabled by coupling the quantized radiation mode to multiple molecules. Our results suggest that in the resonance case, a photon is recycled among molecules to enable multiple excited state reactions, thus effectively functioning as a catalyst. In the nonresonance case, molecules emit and absorb virtual photons to initiate excited state reactions through fundamental quantum electrodynamics processes. These results from quantum dynamics simulations reveal basic principles of polariton photochemistry as well as promising reactivities that take advantage of intrinsic quantum behaviors of photons.
Keyphrases
  • molecular dynamics
  • monte carlo
  • energy transfer
  • room temperature
  • radiation therapy
  • dna methylation
  • gold nanoparticles
  • mass spectrometry
  • genome wide
  • living cells
  • high speed