Login / Signup

Slag Blended Cement Paste Carbonation under Different CO2 Concentrations: Controls on Mineralogy and Morphology of Products.

Wei LiuShifa LinYongqiang LiWu-Jian LongZhijun DongLuping Tang
Published in: Materials (Basel, Switzerland) (2020)
To investigate the effect of different CO2 concentrations on the carbonation results of slag blended cement pastes, carbonation experiments under natural (0.03% CO2) and accelerated conditions (3, 20, and 100% CO2) were investigated with various microscopic testing methods, including X-ray diffraction (XRD), 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR) and scanning electron microscopy (SEM). The XRD results indicated that the major polymorphs of CaCO3 after carbonation were calcite and vaterite. The values of the calcite/(aragonite + vaterite) (c/(a + v)) ratios were almost the same in all carbonation conditions. Additionally, NMR results showed that the decalcification degree of C-S-H gel exposed to 0.03% CO2 was less than that exposed to accelerated carbonation; under accelerated conditions, it increased from 83.1 to 84.2% when the CO2 concentration improved from 3% to 100%. In SEM observations, the microstructures after accelerated carbonation were denser than those under natural carbonation but showed minor differences between different CO2 concentrations. In conclusion, for cement pastes blended with 20% slag, a higher CO2 concentration (above 3%) led to products different from those produced under natural carbonation. A further increase in CO2 concentration showed limited variation in generated carbonation products.
Keyphrases
  • magnetic resonance
  • electron microscopy
  • high resolution
  • solid state
  • magnetic resonance imaging
  • room temperature
  • atomic force microscopy