Login / Signup

Keeping quality of raw ground beef patties fortified with polyphenols extracted from Acacia mearnsii bark and leaves.

Kudzai N NgongoniTrust M PfukwaCletos Mapiye
Published in: Meat science (2024)
Acacia mearnsii byproducts are naturally endowed with a plethora of diverse polyphenols that exhibit antioxidant properties indicating potential application in enhancing oxidative shelf-life of perishable foods. The current study evaluated the oxidative shelf-life of raw ground beef patties fortified with 450 μg/g of polyphenolic extracts from A. mearnsii bark (AMBE) or leaves (AMLE) compared to positive (sodium metabisulphite; SMB) and negative (no extract; CTL) controls for 9 d at 4 °C in a simulated retail display. The AMBE had higher (P ≤ 0.05) contents of proanthocyanidins, and total phenols, flavonoids and tannins, and consequently demonstrated greater (P ≤ 0.05) in vitro antioxidant activity than AMLE. The polyphenolic extracts increased (P ≤ 0.05) antioxidant activity in beef patties compared to the CTL though they were outperformed (P ≤ 0.05) by the SMB. Fortification of beef patties with the polyphenolic extracts, particularly AMBE, delayed colour deterioration and oxidation of myoglobin during retail display relative to the CTL but were less efficient than SMB (P ≤ 0.05). Beef patties fortified with the polyphenolic extracts and SMB had comparable (P > 0.05) peroxide values, TBARS and p-Anisidine values which were all lower (P ≤ 0.05) than those for the CTL patties. The order of protein thiol content in beef patties was as follows: CTL ≥ AMLE ≥ AMBE ≥ SMB (P ≤ 0.05). Findings suggest that A. mearnsii-derived polyphenolic antioxidants, particularly AMBE has great potential to extend oxidative shelf-life of raw beef patties.
Keyphrases
  • oxidative stress
  • human health
  • small molecule
  • climate change
  • visible light