EPR Spectroscopy as an Efficient Tool for Investigations of Polyelectrolyte Multilayer Growth and Local Chain Dynamics.
Carolin NaasUlrich SchelerUwe LappanPublished in: The journal of physical chemistry. B (2021)
The strong polycation poly(diallyldimethylammonium chloride) (PDADMAC) and the weak polyanion poly(ethylene-alt-maleic acid) (P(E-alt-MA)) were used to build polyelectrolyte multilayers (PEMs) up to 31 layers. A spin-label (SL) was covalently attached to the polyanion for studying the rotational dynamics of the polyacid backbone in a swollen state of the PEMs using continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy. In the first step, the spin-labeled poly(ethylene-alt-maleic acid) (SL-P(E-alt-MA)) was used in every polyanion layer to monitor the PEMs growth by analyzing the integrated intensity of the spectra. The buildup was found to be pH-dependent resulting in PEM with different thicknesses. In the second step, SL-P(E-alt-MA) was selectively placed in a single polyanion layer to study the rotational dynamics of the polyacid backbone. The rotational diffusion coefficient of the polyacid backbone RS and the internal rotational diffusion coefficient of the SL attached to the polymer backbone RI were found to be higher at pH 5 than at pH 4, which is related to enhanced mobility.