Enhancing regenerative approaches with nanoparticles.
Sabine H van RijtPamela HabibovicPublished in: Journal of the Royal Society, Interface (2017)
In this review, we discuss recent developments in the field of nanoparticles and their use in tissue regeneration approaches. Owing to their unique chemical properties and flexibility in design, nanoparticles can be used as drug delivery systems, to create novel features within materials or as bioimaging agents, or indeed these properties can be combined to create smart multifunctional structures. This review aims to provide an overview of this research field where the focus will be on nanoparticle-based strategies to stimulate bone regeneration; however, the same principles can be applied for other tissue and organ regeneration strategies. In the first section, nanoparticle-based methods for the delivery of drugs, growth factors and genetic material to promote tissue regeneration are discussed. The second section deals with the addition of nanoparticles to materials to create nanocomposites. Such materials can improve several material properties, including mechanical stability, biocompatibility and biological activity. The third section will deal with the emergence of a relatively new field of research using nanoparticles in advanced cell imaging and stem cell tracking approaches. As the development of nanoparticles continues, incorporation of this technology in the field of regenerative medicine will ultimately lead to new tools that can diagnose, track and stimulate the growth of new tissues and organs.