Extracellular methemoglobin promotes cyto-adherence of uninfected RBC to endothelial cells: Insight into cerebral malaria pathology.
Sushant KumarVishal TrivediPublished in: Journal of cellular biochemistry (2019)
The endothelial cell barrier is tightly regulated, and disruption or the leaky behavior of the barrier leads to pathology. Disturbance of blood-brain barrier is observed during viral infection, cerebral malaria, and acute hemorrhagic encephalitis. Red blood cells (RBCs) bind to the endothelial cells (ECs) and their affinity towards ECs enhances in the presence of Plasmodium falciparum infection. ECs stimulated with methemoglobin (MetHb; 20 µM) for 1 hour exhibit high levels of cyto-adherence receptors CD36 and ICAM-1 on their cell surface compared with unstimulated cells. These ECs have acquired affinity towards uninfected RBCs in flow at arterial shear stress. SEM analysis indicates that EC-RBC cyto-adherence involved multiple attachment points. Initially, ECs bind single layer of RBCs and the number of RBCs increases over time to give high-order cyto-adherence with more than 30 RBCs adhered to each endothelial cell. The cyto-adherence complexes are stable to high shear stress and can withstand shear stress up to 450 dyne/cm 2 . MetHb-treated ECs exhibited high reactive oxygen species level, and preincubation of ECs with antioxidant (NAC or mannitol) abolished the formation of EC-RBC cyto-adherence complexes. In addition, gallic acid (present in red wine) and green tea extract has inhibited the formation of EC-RBC cyto-adherence complex. A better understanding of gallic acid and tea polyphenol targeting pathological cyto-adherence may allow us to develop a better adjuvant therapy for cerebral malaria and other noninfectious diseases.
Keyphrases
- subarachnoid hemorrhage
- endothelial cells
- plasmodium falciparum
- blood brain barrier
- red blood cell
- glycemic control
- oxidative stress
- early stage
- transcription factor
- hiv infected
- metabolic syndrome
- high glucose
- induced apoptosis
- liver failure
- cancer therapy
- hepatitis b virus
- vascular endothelial growth factor
- mechanical ventilation
- genome wide analysis